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Flux limitation and preheat are important processes in electron transport occurring in laser
produced plasmas. The proper calculation of both of these has been a subject receiving
much attention over the entire lifetime of the laser fusion project. Where nonlocal trans-
port (instead of simple single flux limit) has been modeled, it has always been with what
we denote the equivalent diffusion solution, namely treating the transport as only a diffu-
sion process. We introduce here a new approach called the nonlocal source solution and
show it is numerically viable for laser produced plasmas. It turns out that the equivalent
diffusion solution generally underestimates preheat. Furthermore, the advance of the tem-
perature front, and especially the preheat, can be held up by artificial ‘thermal barriers’.
The nonlocal source method of solution, on the other hand more accurately describes pre-
heat and can stably calculate the solution for the temperature even if the heat flux is up the
gradient.

Published by Elsevier Inc.
1. Introduction

In a laser produced plasma, electron thermal energy is transported principally by electrons with energy between about 5
and 16 times the thermal energy. Electrons with less than five times the thermal energy do not transport any significant en-
ergy. Because of the Maxwellian nature of the electron distribution function, there are effectively no electron with energy
greater than 16 times the thermal energy. Thus even if the mean free path of thermal electrons is smaller than the temper-
ature gradient scale length, the mean free path of the energy carrying electrons, (which is proportional to the energy
squared) may be longer, meaning the transport cannot be described strictly locally (for instance proportional to the temper-
ature gradient).

This problem has long been recognized in laser produced plasmas. Recently we have published several papers [1–3]
examining the use of a Krook model to describe nonlocal transport. Of course we are well aware of the limits of a Krook mod-
el and these have been fully discussed in Refs. [1–3]. There several independent tests of the model were made and the sim-
ulations passed these tests. Also elements of a fully conservative Krook model were sketched out [1].

Since so much of the physics of laser matter interaction is best modeled with fluid simulations, it is important to find
some way of treating nonlocal flux within the constraints of a fluid model if at all possible. Alternate simulation schemes
such as Fokker Planck or direct simulation Monte Carlo could, at very great expense, treat nonlocal transport more accu-
rately, but would certainly fail for treating every other physical process, whereas a local fluid model works very well. Very
briefly, Refs. [1–3] found that the electron energy flux can be split into two parts, a diffusive like part describing the low
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energy electrons, and a nonlocal component describing the higher energy electrons. Regarding the local part, one finds that
the diffusion coefficient is reduced from classical. This is the way our Krook model handles flux limitation. The nonlocal part
is expressed as an integral over particle energy and a convolution over space. It allows the hotter part of the plasma to heat
the cooler parts even though these are some distance away. This is the way our Krook model describes preheat.

Others have also introduced variants of Krook models to describe the nonlocal transport [4,5]. Previously other authors
have also proposed convolutions to describe the energetic particle transport, either ad hoc [6], or based on comparison to
Fokker Planck solutions in infinite homogeneous plasmas [7,8].

What all of these methods have in common is that when it comes time to perform a numerical solution of the energy trans-
port equation, they apply what we term the equivalent diffusion solution [7–9]. That is take the energy flux, however it was
derived, and divide by the negative temperature gradient to get an equivalent diffusion coefficient (or more accurately an
equivalent thermal conduction, which has dimension nx2/t, where n is the electron density, instead of a diffusion coefficient
which has dimension x2/t). Then the problem is solved as a diffusion problem. This usually makes use of an implicit numerical
scheme and has the advantage of being unconditionally stable. However in a laser plasma simulation the diffusion coefficient
depends on temperature so the problem is nonlinear and more complicated. We discuss this further shortly. Furthermore
there are problems with this approach which were apparent to its early users [7]. Namely there could be a thermal flux where
the temperature gradient is zero, implying infinite equivalent diffusion coefficient. To handle this, the diffusion coefficient is
limited by some maximum value, typically a thousand or a million times classical. An even more serious problem is that the
flux may be up the temperature gradient rather than down it. This would mean a negative diffusion coefficient. The solution
(both analytically and numerically) would be unstable. To treat this case, wherever the equivalent diffusion coefficient is neg-
ative, it is replaced with the classical positive value. This is the way nonlocal transport has been handled up to now, but there
has neither been an independent check of it, nor examination of the validity of the equivalent diffusion solution.

Here we solve the nonlocal transport equation without using an equivalent diffusion solution and compare our solutions
to it. We call this new technique the nonlocal source solution. The diffusive part of the transport is treated in the usual way,
with an implicit solution. The nonlocal part is treated as an energy source and treated explicitly. One might think there could
be problems with numerical stability. After all the code has, among other constraints, a Courant condition based on the ion or
fluid velocity. However as we mentioned, the electron energy is transported by electrons with energy between about 5 and
16 times the thermal energy, so one might think such an approach would be numerically unstable. However this is usually
not the case. The implicit solution of the diffusive part gives rise to a strong stabilizing effect. In Section 2 we work out the
numerical stability condition for the nonlocal source solution. Depending on the relative sizes of the local versus nonlocal
flux, there may be no instability limit at all on the time step. If the nonlocal part is sufficiently large, and the local part is
sufficiently small, there is a stability condition, but the constraint is weak for typical laser plasmas.

It is interesting to compare our Krook model for transport in laser plasmas with advanced techniques for handling trans-
port in magnetically confined plasmas [10,11]. For the former, turbulence likely does not play a major role, although it may
arise in such a way that it can be modeled with an enhanced collision frequency [12,13]. Rather what is important is the
nonlocal transport of the energetic particles, the local transport of the low energy particles, and their interplay. Any theory
here must involve velocity space. For the magnetic fusion case, turbulence apparently plays a major role, and advanced
mathematical techniques have been proposed to deal with it. However these techniques do not involve velocity space,
and they are probably not appropriate for the case of laser produced plasmas.

Section 3 works out the stability condition for our Krook model of electron transport. This lets us evaluate the maximum
stable time step and insure that the code runs with a smaller time step. In most cases we have looked at, there is, in practice, no
additional constraint. Section 4 applies this to a simple problem, a uniform (i.e. infinitely massive ions) plasma with a back-
ground temperature of 1 keV, but imbedded within is a slug of 50 keV plasma. We solve for the time evolution of the temper-
ature profile using classical thermal conductivity, Krook model using an equivalent diffusion solution, and Krook using a
nonlocal source solution. For the latter we find that the numerical stability condition is well satisfied. The classical solution
has a rapidly moving heat front and no evidence of preheat, as expected. The equivalent diffusion solution has a slower mov-
ing main heat front and a small amount of preheating. The nonlocal source solution has a slower moving heat front than clas-
sical, but faster than the equivalent diffusion solution. Most important, it has stronger preheat than the equivalent diffusion
solution. Our conclusion is that the equivalent diffusion solution can underestimate the preheat. Also we show that the non-
local source solution has no problem with energy flux up a temperature gradient, whereas the equivalent diffusion solution
encounters artificial ‘thermal barriers’. Section 5 briefly reexamines the problem of a 4 keV plasma slug embedded in a 1 keV
plasma. This was initially examined with a Fokker Planck simulation by Matte and Virmont [14]. In Ref. [2] we compared the
equivalent diffusion solution to this problem with the Fokker Planck solution, and concluded that the Krook model compared
more favorably than any other transport model, especially in the time asymptotic limit. In Section 5. we examine this problem
comparing the nonlocal source solution with the equivalent diffusion solution as a function of time. We find the two solutions
are close, and in the time asymptotic limit approach one another. Finally Section 6 gives conclusions.
2. The nonlocal source term approach and its stability

In the models for non-thermal electron energy transport which we have developed [1–3], we found that the electron thermal
energy flux is the sum of two terms, a local term which has the properties of classical transport, and a nonlocal term which is a
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convolution over space as well as an integral over energy. As the temperature equation has many terms, representing many
physical processes in it, we examine the numerical stability of a simpler system, namely a temperature equation of the form
@T
@t
¼WD

@2T
@x2 þ

Z 1

Ncr

dN
@

@x
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dx0

KðNÞ
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aðNÞ expf�jKðNÞðx� x0Þjg @Tðx0Þ
@x0

� �
� � @

@x
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For an actual laser plasma, the situation is more complicated because D is a function of T(x) and a is a function of Tðx0Þ. How-
ever we proceed with the simple linear case and discuss its validity and applicability shortly. In an analytic theory of course,
the nonlocal flux alone is sufficient. But when interpolating onto a finite spatial grid, for many energies (i.e N’s) the x0 integra-
tion takes place within a single grid cell. For these energies, the finite difference approximation is not even qualitatively cor-
rect. Thus in practice, it is necessary to split the flux into a local and nonlocal part. We will discuss this in more detail shortly.

Here D is the classical diffusion coefficient, and W is the reduction from the classical result [1–3]. It arises because as non-
local effects become more important, the local transport decreases. The second term in Eq. (1) comes from the thermal flux
arising from nonlocal effects. It is an integral over particle energy N. As discussed in [2,3], the minimum energy Ncr is deter-
mined first by the condition that WD is positive (meaning Ncr=T > 3:5); and second by the condition that the integral over x’
is reasonably represented by the summation (meaning KðNcrÞDx < 0:2; KðNÞ being a decreasing function of N reflecting the
longer mean free paths of the more energetic particles). The last terms on the right simply defines this rate of change of tem-
perature in terms of the gradients of local and non local fluxes. As long as WD and a are positive, there are no unstable, i.e.
exponentially growing solutions to Eq. (1).

In the literature [1–9], this equation has typically been solved with what we call the equivalent diffusion solution. Namely
one defines an equivalent diffusion coefficient
Deq ¼ �
ql þ qnl

@T
@x

ð2Þ
and solves the equation as a diffusion equation. However if the temperature gradient becomes zero, Deq is infinite. Even more
of a problem, if Deq is negative in some regions, the diffusion equation is violently unstable. To treat these cases, the approach
has been to restrict Deq to some maximum, say 103 times classical, and in regions where Deq is negative, to replace it with the
positive classical result. We will see that this can lead to greatly inaccurate solutions in some cases.

Instead of the equivalent diffusion solution, we treat the added term in Eq. (1) as a nonlocal source term and treat it
explicitly, that is in solving for the (n + 1) time step, the source term is evaluated at the nth time step. However we treat
the local diffusion term implicitly, that is the diffusion term is evaluated at the (n + 1) time step. If a diffusion equation is
solved implicitly, there is no constraint on the time step for numerical stability, but only for accuracy. However when treat-
ing diffusion-like equations explicitly, the condition for numerical stability demands a very small time step. Indeed for the
case of a grid with space step Dx and time step Dt, the well known condition for stability is (for W = 1), Dt < Dx2=2D.

Let us pause here to briefly discuss the implicit solution to the temperature equation as done in laser fusion calculations.
If D were constant, the implicit calculation is straightforward. The problem is that D has strong temperature dependence; it
varies roughly as T5/2, with other weaker dependences as well. Each laboratory doing laser fusion calculations uses its own
approach. At NRL, we use the fluid simulation code FAST [15]. It treats the implicit temperature calculation with an iteration
scheme [16]. The temperature dependence of D is expressed at the current time step and then T is advanced implicitly as a
linear calculation. This new T is then used in D and the process is iterated until convergence is achieved. In practice, it works
very well with a few iterations.

Hence before applying a nonlocal source term approach, we must first examine the numerical stability where the source
term is treated explicitly and the diffusion term is treated implicitly. An actual numerical stability calculation, taking into
account the dependence of D and a on T would be extremely complicated due to the fact that this introduces both inhomo-
geneity and nonlinearity. Furthermore, even if one could do such a stability calculation, it would be of little use; every tem-
perature profile would have a different stability condition. To proceed, we do a much simpler numerical stability calculation,
we consider D and a to be independent of space (but a depends on N). Hence we consider only the linear homogeneous prob-
lem. Intuitively one would expect this to give reasonable guidance; such an approach is standard in the literature and goes
back to a textbook on numerical methods [17]. Furthermore, we will see shortly that there are other convincing reasons to
believe that the results of the stability analysis can be applied in a much more general sense.

To continue, we write out the discrete forms of the various operators. Here superscripts refer to time step, subscripts to
spatial step. To examine the numerical stability, we assume that
Tnþ1
p ¼ ½expð�mDtÞ�Tn

p ði:e: TðtÞ � expð�mtÞÞ; ð3aÞ
Tn

pþ1 ¼ ½expð�kDxÞ�Tn
p ði:e: TðxÞ � expðikxÞÞ: ð3bÞ
Ultimately we wish to solve for the dispersion relation between m and k. Note that if m < 0, for the finite difference problem,
whereas if m > 0 for the continuum problem (as it is for our case), the solution is numerically unstable.

We now write out the discrete forms of the various terms in Eq. (1). The first is
@T
@t
¼

Tn
p expð�mDtÞ � Tn

p

Dt
: ð4Þ
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The second is
�
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p expð�mDtÞ; ð5Þ
where we note here that on the right hand side of Eq. (5), T is evaluated at the advanced time step, t ¼ ðnþ 1ÞDt. The nonlocal
term on the right hand side of Eq. (1), when written in finite difference form, and using Eq. (3b) breaks up into summations
over various geometric series with ratio exp½ð�KðNÞ þ ikÞDx� or exp½ð�KðNÞ � ikÞDx�. Doing these sums over the geometric
series, we find that this term is
� @qnl
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Hence we find that the dispersion relation is
expð�mDtÞ � 1
Dt

¼ fexpðikDxÞ � 2þ expð�ikDxÞg WD expð�mDtÞ
Dx2 þ

Z
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: ð7Þ
As is usually the case in investigations of numerical stability [17], and as we find by an investigation of Eq. (7), the most unsta-
ble wave number satisfies kDx ¼ p. To show this, the only term in Eq. (7) which can drive instability is the R term, the nonlocal
term. The numerical solution will first exhibit instability where this term maximizes. By manipulating the expression for R,
and using the half angle formula, it is possible to show that each term in the N summation has for its kDx dependence
1� cos kDx
AðNÞ � cos kDx

;

where AðNÞ is a function of N which is not necessary to write out for our purposes here except to note that it is always greater
than one. Clear this maximizes at kDx ¼ p, meaning that the numerical scheme is first unstable for this wave number.

Let us now reconsider the linear homogeneous approximation used in the stability analysis. Even though the temperature
varies in x, there is rarely very much temperature variation within a few grid cells. However numerical instability occurs on
the very shortest spatial scale length, so the background appears nearly homogeneous. Thus the approximation of constant
D, where the local temperature used in D is regarded as a constant local value is reasonably valid.

Taking kDx ¼ p, we find
RðKðNÞDx;pÞ ¼ 1� expð�KðNÞDxÞ
1þ expð�KðNÞDxÞ �

KðNÞDx
2

: ð8Þ
We assume here that kðNÞDx� 1. For those energies for which kDx� 1, expressing the dx0 integral in Eq. (1) as a finite sum-
mation, as in deriving Eq. (6) is not even qualitatively correct. For these energies for which kðNÞDx� 1, the energy flux is
treated with the local approximation. In treating the energy flux in for instance a laser produced plasma, there is a very wide
range of particle energies, say from N ¼ 10 eV to N ¼ 100 keV. Since the mean free path, proportional to N�2 varies over eight
orders of magnitude, and since a laser plasma simulation typically has fewer than 1000 spatial cells, flux cannot be treated
either all locally or all nonlocally (unless the most energetic electron has mean free path less than a grid cell).

Let us illustrate this point with a simple example. Say the plasma temperature is 1 keV and the mean free path of a 2 keV
electron is one grid cell. In practice, we find that due to the Maxwellian nature of the distribution function, there is no con-
tribution to the thermal flux from energies above 16 times the temperature [1]. Since the mean free path is proportional to
the temperature squared, this means that the most energetic electron spreads out its energy over 64 grid cells. Clearly this
must be treated nonlocally. On the other hand, there are also many electrons with energy of for instance 500 eV. These de-
posit their energy in 1/16 of a grid cell. Clearly any numerical algorithm which has them spreading their energy out over
many grid cells will be incorrect. Thus given the constraints of a finite grid, one has no choice but to break up the energy
range into two regimes, the lower energies treated locally, the higher, nonlocally.

We find that a good approximation is to treat the electron flux nonlocally if its mean free path is five grid cells (i.e
kDx < 0:2Þ� or longer [3].

So the dispersion relation for this kDx is
expð�mDtÞ ¼ 1� ADt
1þ 4WDDt=Dx2 ; with A ¼

Z 1

Ncr

dNK2ðNÞaðNÞ: ð9Þ
The condition for numerical instability is that the right hand side of Eq. (9) has a magnitude greater than unity. Since the sign
in this case is negative, this means that for numerical instability, we need Rem < 0 and Imm ¼ p. Hence the condition for
numerical instability is
ADt > 2þ 4WDDt
Dx2 : ð10Þ
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As long as A < 4WD=Dx2, solving the local diffusion part implicitly, and the nonlocal source term explicitly, will always be
numerically stable. In other words the natural stability of the implicit solution of the diffusion equation will always over-
power the tendency of the explicit solution of the nonlocal source term toward stability. This is a numerical condition involv-
ing only Dx, and not Dt. On the other hand, if A > 4WD=Dx2, we find numerical stability as long as the time step satisfies the
condition
Fig. 1.
always
Dt
Dtex

<
1

ADtex=2�W
: ð11Þ
Here Dtex is the maximum time step for stability for the explicit diffusion calculation, Dx2=2D. This is plotted graphically in
Fig. 1. In this case, the stability condition once again depends on Dt.

3. Calculation of aðÞ and the numerical stability condition for a laser produced plasma

In our earlier work, we have written out expressions for the thermal flux using a Krook model for electron collisions and a
Fokker Planck model for electron ion collisions [1–3]. There the electron ion and electron collision frequencies were
mee ¼
5:8	 10�6nK

T3=2
e ½1þ ð5:8=7:7ÞðN=TÞ3=2�

� 2me

½1þ ð5:8=7:7ÞðN=TÞ3=2�
� meSðN; ZÞ; ð12Þ

mei ¼ 1:34Zmeðmv2=2TÞ�3=2 � meSiðN; ZÞ; ð13Þ
mei þ mee ¼ meSðv; ZÞ: ð14Þ
Notice that these collision frequencies are functions of particle energy N, as well as position through the spatial dependence
of the electron density n, the Coulomb logarithm K, the electron temperature T, and the charge state Z.

In Refs. [1–3] we derived an expression for the energy flux:
qðxÞ ¼ �KspT5=2T 0
bðNcrðrÞ=T ðxÞÞ
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where qL and qNL are the local and nonlocal terms in q(x) and
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Other quantities in Eq. (15) are
bðyÞ ¼
Z y

0
duu5=2 fu� Z4=Z2g

SðuÞ expð�uÞ; ð17Þ

RðyÞ ¼
Z 1

y
du

u3=2 u� Z4
Z2

n o
SðuÞ expð�uÞ; ð18Þ

ZnðZÞ ¼
Z 1

0
u2duun expð�u2Þ

Sðu; ZÞ : ð19Þ
Analytic approximations to these quantities have been given elsewhere [1–3]. We note that in the analytic approximations,
the Z dependence is only meaningful if Z > 1. However the colder regions of a laser produced plasma are not necessarily fully
ionized. In these regions, we use the analytic expressions, but evaluate them at Z ¼ 1. Regarding the nonlocal transport, these
cold unionized or partially ionized regions play no role as a source of energetic electrons, but of course they can be important
as regards other physical effects.

The quantity H is given by
Hðx; x0;NÞ ¼
Z x

x0
dx00Kðx00;NÞ; ð20Þ
where
Kðr;NÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3meeðr;NÞ½meeðr;NÞ þ meiðr;NÞ�

p
6x107N1=2 : ð21Þ
And Ksp is the Spitzer conductivity
Ksp ¼
3:1	 1010

K
	 0:4ðZ þ 0:235Þ

Z þ 4:242
ð22Þ
and the expression for Ncr , from Refs. [2,3] is
NcrðxÞ ¼ Max 5TeðxÞ;Min
ð1:15x10�12nðxÞKðxÞð1þ ZðxÞ=2ÞDxÞ1=2

;

ð2:03x10�13nðxÞKðxÞð1þ ZðxÞ=2ÞLTÞ1=2

" #( )
: ð23Þ
In Eqs. (12)–(23), all quantities are in CGS units except energies, (N and T) which are in electron volts. Since the flux is the
energy flux, to write the equation in terms of diffusion equation for temperature, we must divide the flux by the specific heat
Cv, which in the case of a fully ionized plasma is 3n/2.

Hence the dimensionless quantity W is given by
WðNcrðxÞ=TeðxÞÞ ¼
bðNcrðxÞ=TðxÞÞ

bð1Þ þ 0:92
Z4RðNcrðxÞ=TðxÞÞ

Z2bð1Þ
: ð24Þ
As shown in Ref. [3], W(u) need be evaluated only for 5 < u < 14. It varies (monotonically increasing) from about 0.125 at u = 5
to unity for u = 14 and above. Because W < 1 where nonlocal transport occurs, the flux due to the ‘local’ transport is reduced.

As explained in Refs. [1–3], Ncr is the critical energy dividing the low energy electrons, with short mean free path, which
must be treated locally; from the higher energy, long mean free path electrons which must be treated nonlocally. As dis-
cussed in Refs. [2,3], this depends on the size of the grid cell Dx. This is a consequence of the rather small number of total
grid cells (several hundred) to describe a range of mean free paths extending over a range of a factor of more than 108 in
lengths. However there is an additional consideration, namely Ncr=T > 5. We discuss further the consequences of this choice
in the Appendix A.

A laser produced plasma is extremely inhomogeneous. However in the stability calculation in the last section, we as-
sumed a homogeneous system. But the numerical stability is determined at the shortest wavelength, kDx ¼ p. Hence as re-
gards the stability calculation, we may consider the system to be homogeneous, so
H ¼ Kðx;NÞ½x� x0� ð25Þ
and
aðNÞ ¼ 2
3n

Ksp

bð1Þ 1� 0:92
Z4T
Z2N

� � N4 N
T �

Z2
Z2

h i
exp � N

T

� �
T5=2 1þ Z=2½ �

0
@

1
A

8<
:

9=
;: ð26Þ
Here all quantities are defined as a function of x (recall Ncr is a function of x) and N.
To find A, the quantity used in the stability condition, the integral of K2ðNÞaðNÞ must be carried out from Ncr to infinity.

Since K2 is proportional to N�4, this integral is particularly simple to perform analytically; however to get a simple analytic
expression, one must make an asymptotic approximation to the part of the total integral which goes as x�1e�x.



D. Colombant, W. Manheimer / Journal of Computational Physics 229 (2010) 4369–4381 4375
Doing the N integrals, we find
Fig. 2.
preheat
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Thus using the spatially dependent expressions for A and W appropriate for a laser produced plasma, we can determine the
maximum stable time step for stability in any such simulation. This is then added to the constraints on the time step.

4. A sample calculation: failure modes of the equivalent diffusion solution

Here we compare the nonlocal source term solution and the equivalent diffusion solution for a simple test problem. A uni-
form deuterium plasma, with electron density 8	 1023 cm�3 and Z = 1 is set up over a region of 0.5 cm. On the leftmost
0.05 cm, the temperature is 55 keV. Over 0.03 cm, the temperature drops to 1 keV. For x > 0:08 cm, the initial temperature
is constant at 1 keV. K increases monotonically with temperature from 3.4 at 1 keV to 7.3 at 55 keV. This temperature profile
is set up at t ¼ 0. The left boundary is maintained at 55 keV, while the temperature gradient is taken as zero on the right
boundary. If the nonlocal expression for the flux here is not zero, the equivalent diffusion model would give an infinite diffu-
sivity. However this has little effect on the calculation and is treated by the maximum D discussed in the introduction. A much
more complete discussion of boundary conditions is given in Ref. [3]. The time and space dependence of the temperature is
followed using a variety of transport models. This problem is rather like that examined by Matte and Virmont [14], and dis-
cussed in [2], except that here, there is a much greater range of temperature variation, i.e. over a factor of 50. The mean free
path (i.e. K�1) of a 100 keV electron is about 0.011 cm. The temperature diffusion equation is solved by breaking the region
into a grid of 128 spatial steps. In all cases, we find that the time step is stable as specified in Section 2 using the evaluations
of A and W as spelled out in Section 3.

The solution using pure Spitzer (classical conductivity) is shown in Fig. 2. Because the thermal diffusion coefficient is pro-
portional to T5=2, the implicit procedure is not as simple as indicated in Section 2. This temperature must also be evaluated at
the advanced time step, and there is no simple way to do this. Accordingly all implicit schemes in laser plasma simulations
initially take T5=2 at the previous time step where it is known, and use an iteration process to converge to the proper implicit
result. The time interval between the different temperature profiles is 600 ps. In Fig. 3(a) is shown the corresponding plots
for the solution using the equivalent diffusion solution. Because W is less than unity, most of the front moves more slowly
than it does for the classical case. However there is some preheating that is apparent.

In Fig. 3(b) is shown the solution using the nonlocal source solution. Again the main front moves outward noticeably
more slowly than in the classical calculation, but faster than for the equivalent diffusion solution. However now there is
noticeably more preheat. One might think that in the equivalent diffusion solution, we simply did not let the maximum dif-
fusion coefficient be large enough, but this is not the case. We did this calculation where the maximum diffusion coefficient
was limited to 103, 106, and 109 times classical, and there was virtually no difference between the results.

The reason for so much less preheat in the equivalent diffusion calculation seems to be that here, the preheating is mod-
eled as a diffusion process, so to get from point a to point b, the energy has to pass through all points in between at whatever
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the maximum diffusion speed is. However in the nonlocal source solution, heating from the energetic electrons is virtually
instantaneous, at least on the time scale of the electron collision time (�10�12 s for a 100 keV electron). Thus the equivalent
diffusion solution does deemphasize preheat as compared to the nonlocal source solution.

The role of preheat can be illustrated more clearly by examining a third possible solution. In Fig. 3(c) is shown the result of
the nonlocal source solution, but where the nonlocal part is itself artificially set to zero. This is equal to the equivalent diffu-
sion solution where the nonlocal source is also set equal to zero. We see that as in the Spitzer case, there is no preheat at all,
and the main heat front advances even more slowly than in Fig. 3(a). Thus the following rather complicated picture emerges.
In all cases, the main front advances more slowly than it does for classical thermal conduction. This is due to flux limitation,
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characterized by the fact that W(u), from Eq. (23) is less than unity. We can then regard going from Fig. 3(c to a to b) as adding
more and more preheat. We see that the effect of preheat is twofold. First there is the preheat itself. However secondly, the
preheat increases the temperature just ahead of the temperature front. This increases the ‘local’ flux there and speeds up the
advance of the main front. Thus preheat contributes significantly to pulling the main temperature front forward.

Another failure mode of the equivalent diffusion model can be shown even more strikingly and clearly. It results from the
fact that where the flux is up the gradient, the equivalent diffusion model replaces the flux with the classical flux, which may
be much smaller and has the opposite sign. Instead of an initially uniform temperature of 1 keV from 0.08 to 0.5 cm, let the
temperature decrease linearly in space from 1 keV at 0.08 cm to 500 eV at 0.3 cm, and then rise linearly to 1 keV again at
0.5 cm. As far as the nonlocal flux is concerned, it is outward, and barely notices the small temperature dip and rise. However
the equivalent diffusion solution sees a flux up the temperature gradient for x > 0:3 cm, and to maintain numerical stability,
it replaces the nonlocal flux up the temperature gradient with the much, much smaller classical flux down the gradient. In
the equivalent diffusion model this temperature dip presents a thermal barrier, the heat cannot get to the other side without
first diffusing through a region where the temperature gradient is very small, i.e. before filling in the dip.

Fig. 4(a) and (b) shows the temperature profiles as a function of time for the equivalent diffusion solution (4a) and for the
nonlocal source solution (4b). Notice that the initial dip and rise in temperature is hardly visible on the scale shown. How-
ever the equivalent diffusion solution hangs up around the temperature minimum whereas the nonlocal source solution
does not. This is even more apparent in a blown up temperature scale shown in Fig. 5(a) and (b). The equivalent diffusion
solution (5a) clearly hangs up around the temperature minimum and cannot get by it for quite some time. The nonlocal
source solution (5b) however easily overrides the temperature dip and gets past it in a very short time.

Notice that even though the energy flux is going up, rather than down a temperature gradient, the calculation is stable.
This is as determined in Section 2; we have checked that the time step is always below the stability threshold.

To see in more detail the effect of this thermal barrier, we compare the equivalent diffusion solution for the case where
there is, and is not, a temperature dip. Fig. 6 shows blow ups plots of the temperature profile at times 0.29, 1.49, 2.69, and
3.88 ns. The dotted curves are calculations with no initial temperature dip; the solid curves are as in Fig. 5. The main tem-
perature front advances somewhat more slowly for the case with the initial temperature dip. However the greatest differ-
ence is in the preheat. For no initial temperature dip, we see significant preheat, but not nearly as much as for the equivalent
source solution. However for the case of the initial temperature dip, where on the right hand side of the dip, the diffusion is
classical and to the left, there is virtually no preheat.

To test the accuracy of our numerical scheme, we reran the case of Fig. 3(b), the nonlocal source solution, on two different
spatial grids. First we took our standard case of 128 grid cells, and then we took 256 grid cells. Here the maximum temper-
ature was taken as 45 keV instead of 55. A plot of the position of the advancing front, defined as the position of maximum
curvature of the T(x) graph, as a function of time is shown in Fig. 7. Clearly to within an accuracy of a few percent, the results
are independent of grid size.

To summarize, the equivalent diffusion solution unphysically reduces the effect of preheat as compared to the more accu-
rate nonlocal source solution. Furthermore, it is susceptible to additional inaccurate results because artificial thermal barri-
ers can be set up.
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5. A reexamination of the Matte and Virmont Fokker Planck solution

In Ref. [2] we compared the Krook solution to that of Matte and Virmont [14]. They used a Fokker Planck code to examine
the evolution of a temperature profile which starts out at 4 keV on the left boundary and drops sharply to 1 keV. Initially the
1 keV temperature is constant to the right hand boundary. For the plasma in Ref. [10], Z = 6, the electron density is
n ¼ 6	 1022 cm�3, the time s is measured in collision times for a particle at the average temperature, and the length L is
measured in units of mean free path lengths for this particle. The particular simulation done here is for an L ¼ 20, which
for our system is 0.00165 cm. Fig. 8 shows the results of the equivalent diffusion solution (solid) and nonlocal source solution
(dashed) as the time increases. The single solid curve is the initial temperature. Clearly the two solution methods are rea-
sonably close to each other for this problem, but in the transient regime, the nonlocal source solution shows somewhat more
preheat. In the time asymptotic limit, the two solutions are virtually the same and match well to the time asymptotic Fokker
Planck solution as discussed in Ref. [2].

6. Conclusions

In using a nonlocal transport model, we find that it is not necessary to use an equivalent diffusion solution to the energy
transport equation. The new method, called the nonlocal source solution, relies on splitting the expression for the heat flux
into a Spitzer like term, proportional to minus the temperature gradient, and a nonlocal source term. We have investigated
the numerical stability and found that it usually allows time steps comparable to time step constraints already in the code.
Thus using a nonlocal source solution, numerical stability can be maintained. The Spitzer like term is treated implicitly.
The implicit treatment requires that the nonlinear nature of the diffusion equation be properly treated, as discussed in Sec-
tions 2 and 4. We find that the equivalent diffusion solution underestimates the effect of preheat as compared to the more
accurate nonlocal source solution. Furthermore, preheat as calculated by equivalent diffusion solution is susceptible to be fur-
ther underestimated if there is a thermal barrier, namely a region where the actual energy flux goes up the temperature gra-
dient. As long as the time step obeys the stability condition, the nonlocal source solution is not held up at all by the thermal
barrier, and the solution can be stably calculated even if the flux is up the gradient. However if the nonlocal source algorithm
requires too small a time step, the equivalent diffusion model can in most cases be a reasonable substitute.
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Appendix A

Here we investigate further the physical reason for, and the consequences of choosing Ncr=T > 5. A plot of W(u) is shown
in Fig. A1. Notice that for u < 3:5;WðuÞ < 0. This is a consequence of the fact that as energetic particles carry heat and current
forward, the less energetic particles must carry current backwards so that the total current is zero.

Hence if Ncr=T < 3:5, the local diffusion coefficient is negative. While Eq. (10) indicates that it is possible that the algo-
rithm be stable in this case, we find that in practice, this is rarely the case. We have solved the 50 keV slug problem using
the nonlocal source solution and taking Ncr=T ¼ 3. It turns out that there is a large enough region in space where the local
diffusion coefficient is sufficiently negative that the code crashes. Thus in practice, using the nonlocal source solution, to
maintain numerical stability, we cannot let Ncr=T go below 3.5.
0

1

0 10 20

W

u
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The goal then is to take the minimum value of Ncr=T as small as possible, so that as many particles as possible can be
treated nonlocally. However we must maintain numerical stability also. To us, a minimum value of five seems a reasonable
choice. The result is not very sensitive to this choice as long as Ncr=T remains small and numerical stability is maintained. In
Fig. A2 are shown solutions to the 50 keV slug problem at time t ¼ 3 ns for several cases, Krook model nonlocal source solu-
tion with Ncr=T ¼ 4 and 5, Spitzer conductivity, and flux limited diffusion with a flux limit of 0.06. Notice that even for Ncr=T
as small as 4, stability is maintained and the solution is not very different from that with Ncr > 5. These two solutions are
much closer to one another than they are to either classical or flux limited transport.
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